摘要翻译:
本文对文献[12,13]中提出的Polyrakis算法进行了计算研究。这些算法用于确定R^k的有限个正向量集所生成的向量子格和最小格子空间。研究表明,我们的发现在经济学领域中是非常有用的,特别是在证券市场的期权和投资组合保险中。
---
英文标题:
《Computation of vector sublattices and minimal lattice-subspaces of R^k.
Applications in finance》
---
作者:
V.N. Katsikis and I.A. Polyrakis
---
最新提交年份:
2010
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Mathematics 数学
二级分类:Numerical Analysis 数值分析
分类描述:Numerical algorithms for problems in analysis and algebra, scientific computation
分析和代数问题的数值算法,科学计算
--
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
---
英文摘要:
In this article we perform a computational study of Polyrakis algorithms presented in [12,13]. These algorithms are used for the determination of the vector sublattice and the minimal lattice-subspace generated by a finite set of positive vectors of R^k. The study demonstrates that our findings can be very useful in the field of Economics, especially in completion by options of security markets and portfolio insurance.
---
PDF链接:
https://arxiv.org/pdf/1006.4070