摘要翻译:
我们讨论了随机矩阵理论在金融市场和计量经济学模型中的应用,这是一个在过去十年中有相当多的论文致力于讨论的主题。这篇小评论旨在通过各种理论结果(Marcenko-Pastur谱及其各种推广、随机奇异值分解、自由矩阵、最大特征值统计量等)以及投资组合优化和样本外风险估计的一些具体应用来指导读者。
---
英文标题:
《Financial Applications of Random Matrix Theory: a short review》
---
作者:
J.P. Bouchaud, M. Potters
---
最新提交年份:
2009
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与
神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
---
英文摘要:
We discuss the applications of Random Matrix Theory in the context of financial markets and econometric models, a topic about which a considerable number of papers have been devoted to in the last decade. This mini-review is intended to guide the reader through various theoretical results (the Marcenko-Pastur spectrum and its various generalisations, random SVD, free matrices, largest eigenvalue statistics, etc.) as well as some concrete applications to portfolio optimisation and out-of-sample risk estimation.
---
PDF链接:
https://arxiv.org/pdf/0910.1205