摘要翻译:
给定三个自然数$k,l,d$,使得$k+l=d(d+3)/2$,Zeuthen数$n_{d}(l)$是$\pp^2$中经过$k$点并与$l$线相切的$d$次的非奇异复代数曲线的个数。它不依赖于所选点和线的一般配置$C$。如果点和线是实的,那么实曲线的相应数目$n_{d}^\rr(l,C)$通常取决于所选择的配置。利用Mikhalkin的热带对应定理证明了对于两条直线,实Zeuthen问题是极大的:存在一个构型$C$,使得$N_{d}^\rr(2,C)=N_{d}(2)$。对应定理将计算简化为用多重数计算某些格路径。
---
英文标题:
《Real Zeuthen numbers for two lines》
---
作者:
Benoit Bertrand
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Given three natural numbers $k,l,d$ such that $k+l=d(d+3)/2$, the Zeuthen number $N_{d}(l)$ is the number of nonsingular complex algebraic curves of degree $d$ passing through $k$ points and tangent to $l$ lines in $\PP^2$. It does not depend on the generic configuration $C$ of points and lines chosen. If the points and lines are real, the corresponding number $N_{d}^\RR(l,C)$ of real curves usually depends on the configuration chosen. We use Mikhalkin's tropical correspondence theorem to prove that for two lines the real Zeuthen problem is maximal: there exists a configuration $C$ such that $N_{d}^\RR(2,C)=N_{d}(2)$. The correspondence theorem reduces the computation to counting certain lattice paths with multiplicities.
---
PDF链接:
https://arxiv.org/pdf/0710.1095