全部版块 我的主页
论坛 经济学人 二区 外文文献专区
461 0
2022-03-08
摘要翻译:
设f是维数为D的非奇异复代数簇上的正则函数。我们用嵌入分辨率证明了f的motivic zeta函数的一个公式。该公式是在Grothendieck环本身之上的,并专门针对Denef和Loeser在某一局部化上的公式。我们还证明了满足f=0的n-喷流空间可以划分为局部闭子集,这些子集同构于维数为dn/2的仿射空间的笛卡尔积。最后,我们看一下motivic zeta函数极点的结果。
---
英文标题:
《The motivic zeta function and its smallest poles》
---
作者:
Dirk Segers, Lise Van Proeyen, Willem Veys
---
最新提交年份:
2012
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  Let f be a regular function on a nonsingular complex algebraic variety of dimension d. We prove a formula for the motivic zeta function of f in terms of an embedded resolution. This formula is over the Grothendieck ring itself, and specializes to the formula of Denef and Loeser over a certain localization. We also show that the space of n-jets satisfying f=0 can be partitioned into locally closed subsets which are isomorphic to a cartesian product of some variety with an affine space of dimension the round up of dn/2. Finally, we look at the consequences for the poles of the motivic zeta function.
---
PDF链接:
https://arxiv.org/pdf/0710.5911
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群