摘要翻译:
由于拥有庞大的数据库,私营科技公司可以与公共统计机构竞争,提供人口统计数据。然而,私营公司面临着提供高质量统计数据和保护数据使用者隐私的不同激励。当隐私保护和统计准确性都是公共产品时,私人提供者倾向于至少生产一种次优产品,但不清楚是哪一种。我们建立了一个公司的模型,该公司在保证差异隐私的情况下发布统计数据。在此框架下,我们证明了由私营企业提供的数据会导致数据质量的低效率。
---
英文标题:
《Suboptimal Provision of Privacy and Statistical Accuracy When They are
Public Goods》
---
作者:
John M. Abowd and Ian M. Schmutte and William Sexton and Lars Vilhuber
---
最新提交年份:
2019
---
分类信息:
一级分类:Economics 经济学
二级分类:Theoretical Economics 理论经济学
分类描述:Includes theoretical contributions to Contract Theory, Decision Theory, Game Theory, General Equilibrium, Growth, Learning and Evolution, Macroeconomics, Market and Mechanism Design, and Social Choice.
包括对契约理论、决策理论、博弈论、一般均衡、增长、学习与进化、宏观经济学、市场与机制设计、社会选择的理论贡献。
--
一级分类:Computer Science 计算机科学
二级分类:Cryptography and Security 密码学与安全
分类描述:Covers all areas of cryptography and security including authentication, public key cryptosytems, proof-carrying code, etc. Roughly includes material in ACM Subject Classes D.4.6 and E.3.
涵盖密码学和安全的所有领域,包括认证、公钥密码系统、携带证明的代码等。大致包括ACM主题课程D.4.6和E.3中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Databases 数据库
分类描述:Covers database management, datamining, and data processing. Roughly includes material in ACM Subject Classes E.2, E.5, H.0, H.2, and J.1.
涵盖数据库管理、
数据挖掘和数据处理。大致包括ACM学科类E.2、E.5、H.0、H.2和J.1中的材料。
--
---
英文摘要:
With vast databases at their disposal, private tech companies can compete with public statistical agencies to provide population statistics. However, private companies face different incentives to provide high-quality statistics and to protect the privacy of the people whose data are used. When both privacy protection and statistical accuracy are public goods, private providers tend to produce at least one suboptimally, but it is not clear which. We model a firm that publishes statistics under a guarantee of differential privacy. We prove that provision by the private firm results in inefficiently low data quality in this framework.
---
PDF链接:
https://arxiv.org/pdf/1906.09353