摘要翻译:
处理大量的对称性常常是有问题的。一个解决方案是只关注产生对称群的对称性。虽然在某些特殊情况下,仅打破一个发电机组中的对称性是完全的,但也有一些情况下,没有一个非冗余的发电机组消除了所有的对称性。然而,只关注发电机提高了可处理性。我们证明了消除所有对称解在生成集大小上是多项式的,而剪枝所有对称值是NP困难的。我们的证明考虑了行和列对称性,这是矩阵模型中常见的对称性类型,其中打破正生成元对称是非常有效的。我们证明了在决策变量矩阵的行和列上传播词典排序约束的合集是NP-hard的。
---
英文标题:
《Breaking Generator Symmetry》
---
作者:
George Katsirelos, Nina Narodytska, Toby Walsh
---
最新提交年份:
2009
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Computational Complexity 计算复杂度
分类描述:Covers models of computation, complexity classes, structural complexity, complexity tradeoffs, upper and lower bounds. Roughly includes material in ACM Subject Classes F.1 (computation by abstract devices), F.2.3 (tradeoffs among complexity measures), and F.4.3 (formal languages), although some material in formal languages may be more appropriate for Logic in Computer Science. Some material in F.2.1 and F.2.2, may also be appropriate here, but is more likely to have Data Structures and Algorithms as the primary subject area.
涵盖计算模型,复杂度类别,结构复杂度,复杂度折衷,上限和下限。大致包括ACM学科类F.1(抽象设备的计算)、F.2.3(复杂性度量之间的权衡)和F.4.3(形式语言)中的材料,尽管形式语言中的一些材料可能更适合于计算机科学中的逻辑。在F.2.1和F.2.2中的一些材料可能也适用于这里,但更有可能以数据结构和算法作为主要主题领域。
--
---
英文摘要:
Dealing with large numbers of symmetries is often problematic. One solution is to focus on just symmetries that generate the symmetry group. Whilst there are special cases where breaking just the symmetries in a generating set is complete, there are also cases where no irredundant generating set eliminates all symmetry. However, focusing on just generators improves tractability. We prove that it is polynomial in the size of the generating set to eliminate all symmetric solutions, but NP-hard to prune all symmetric values. Our proof considers row and column symmetry, a common type of symmetry in matrix models where breaking just generator symmetries is very effective. We show that propagating a conjunction of lexicographical ordering constraints on the rows and columns of a matrix of decision variables is NP-hard.
---
PDF链接:
https://arxiv.org/pdf/0909.5099