摘要翻译:
我们检验了用户使用答案集编程(ASP)来表示逻辑形式化的实用性。我们的例子是一个形式主义,旨在从因果信息中捕捉因果解释。我们展示了这一翻译工作的自然性和相对效率。我们对编写ASP程序的简便性感兴趣。早期制度的局限性使得在实践中,“陈述方面”更多的是理论上的,而不是实践上的。我们展示了工作ASP系统的最新改进是如何促进翻译的。
---
英文标题:
《A formalism for causal explanations with an Answer Set Programming
translation》
---
作者:
Yves Moinard (INRIA - IRISA)
---
最新提交年份:
2010
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
We examine the practicality for a user of using Answer Set Programming (ASP) for representing logical formalisms. Our example is a formalism aiming at capturing causal explanations from causal information. We show the naturalness and relative efficiency of this translation job. We are interested in the ease for writing an ASP program. Limitations of the earlier systems made that in practice, the ``declarative aspect'' was more theoretical than practical. We show how recent improvements in working ASP systems facilitate the translation.
---
PDF链接:
https://arxiv.org/pdf/1008.3879