全部版块 我的主页
论坛 经济学人 二区 外文文献专区
542 0
2022-03-08
摘要翻译:
为语音应用训练机器学习算法需要大量的、有标记的训练数据集。这对于临床应用是有问题的,在临床应用中,由于隐私问题或缺乏访问,获取此类数据的费用高得令人望而却步。因此,临床语音应用通常使用只有几十个说话者的小数据集来开发。本文提出了一种模拟训练数据的方法,通过对抗性训练将健康语音转换为不正常语音,以用于临床应用。我们使用客观和主观标准来评估我们方法的有效性。我们将转化后的样本交给五位有经验的语言病理学家(SLPs),并要求他们识别样本是健康的还是发音障碍的。结果表明,SLPs在65%的时间内识别出转换后的语音是不同步的。在一个初步的分类实验中,我们表明,通过使用模拟语音样本来平衡现有的数据集,经过数据增强后,分类准确率提高了约10%。
---
英文标题:
《Simulating dysarthric speech for training data augmentation in clinical
  speech applications》
---
作者:
Yishan Jiao, Ming Tu, Visar Berisha, Julie Liss
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--

---
英文摘要:
  Training machine learning algorithms for speech applications requires large, labeled training data sets. This is problematic for clinical applications where obtaining such data is prohibitively expensive because of privacy concerns or lack of access. As a result, clinical speech applications are typically developed using small data sets with only tens of speakers. In this paper, we propose a method for simulating training data for clinical applications by transforming healthy speech to dysarthric speech using adversarial training. We evaluate the efficacy of our approach using both objective and subjective criteria. We present the transformed samples to five experienced speech-language pathologists (SLPs) and ask them to identify the samples as healthy or dysarthric. The results reveal that the SLPs identify the transformed speech as dysarthric 65% of the time. In a pilot classification experiment, we show that by using the simulated speech samples to balance an existing dataset, the classification accuracy improves by about 10% after data augmentation.
---
PDF链接:
https://arxiv.org/pdf/1804.10325
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群