摘要翻译:
本文讨论了一个半参数广义自回归条件异方差(S-GARCH)模型。对于该模型,首先用核估计器估计无条件方差的时变长期分量,然后用拟极大似然估计器(QMLE)估计GARCH型短期分量中的非时变参数。我们证明了QMLE在参数收敛速度下是渐近正态的。其次,我们构造了线性参数约束的Lagrange乘子检验和模型检验的portmanteau检验,并得到了它们的渐近零分布。我们的整个统计推断过程适用于非平稳数据,具有两个重要的特点:第一,我们的QMLE和两个检验对长期成分的未知形式是自适应的;第二,当S-GARCH模型平稳时,我们的QMLE和两个检验与方差目标法具有相同的效率和检验能力。
---
英文标题:
《Adaptive inference for a semiparametric generalized autoregressive
conditional heteroskedasticity model》
---
作者:
Feiyu Jiang, Dong Li, Ke Zhu
---
最新提交年份:
2020
---
分类信息:
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
---
英文摘要:
This paper considers a semiparametric generalized autoregressive conditional heteroskedasticity (S-GARCH) model. For this model, we first estimate the time-varying long run component for unconditional variance by the kernel estimator, and then estimate the non-time-varying parameters in GARCH-type short run component by the quasi maximum likelihood estimator (QMLE). We show that the QMLE is asymptotically normal with the parametric convergence rate. Next, we construct a Lagrange multiplier test for linear parameter constraint and a portmanteau test for model checking, and obtain their asymptotic null distributions. Our entire statistical inference procedure works for the non-stationary data with two important features: first, our QMLE and two tests are adaptive to the unknown form of the long run component; second, our QMLE and two tests share the same efficiency and testing power as those in variance targeting method when the S-GARCH model is stationary.
---
PDF链接:
https://arxiv.org/pdf/1907.04147