全部版块 我的主页
论坛 经济学人 二区 外文文献专区
316 0
2022-03-08
摘要翻译:
设X是维数n的射影簇,L是X上的nef因子,用e_d(r;X,L)表示X中r个极一般点的D维Seshadri常数。我们证明了e_d(Rs;X,L)>=e_d(r;X,L)e_d(S;P^n,O_{P^n}(1))。
---
英文标题:
《An inequality between multipoint Seshadri constants》
---
作者:
J. Ro\'e, J. Ross
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  Let X be a projective variety of dimension n and L be a nef divisor on X. Denote by e_d(r;X,L) the d-dimensional Seshadri constant of r very general points in X. We prove that e_d(rs;X,L) >= e_d(r;X,L)e_d(s;P^n,O_{P^n}(1)).
---
PDF链接:
https://arxiv.org/pdf/0804.1662
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群