摘要翻译:
Iyama和Yoshino在最近的论文“三角范畴和刚性Cohen-Macaulay模中的变异”中考虑了孤立奇点的两个有趣的例子,在这些奇点上可以根据线性代数数据对不可分解的极大Cohen-Macaulay模进行分类。在本文中,我们提出了两种新的方法来处理这些例子。在第一种方法中,我们给出了一个与聚类类别的关系。在第二种方法中,我们使用Orlov关于分次奇性范畴的结果。我们在孤立奇点的奇点范畴上得到了一些新的结果,这些结果本身可能是有趣的。
---
英文标题:
《On two examples by Iyama and Yoshino》
---
作者:
Bernhard Keller, Daniel Murfet, Michel Van den Bergh
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In the recent paper "Mutation in triangulated categories and rigid Cohen-Macaulay modules" Iyama and Yoshino consider two interesting examples of isolated singularities over which it is possible to classify the indecomposable maximal Cohen-Macaulay modules in terms of linear algebra data. In this paper we present two new approaches to these examples. In the first approach we give a relation with cluster categories. In the second approach we use Orlov's result on the graded singularity category. We obtain some new results on the singularity category of isolated singularities which may be interesting in their own right.
---
PDF链接:
https://arxiv.org/pdf/0803.0720