全部版块 我的主页
论坛 经济学人 二区 外文文献专区
428 0
2022-03-27
摘要翻译:
为了完成几乎极小度的类,即度精确超过余维数2的非退化不可约射影类的分类理论和结构理论,一个自然的方法是研究极小度的类的简单射影。设$\tilde X\子集{\mathbb P}^{r+1}_k$为各种最小度且余维度至少为2,并考虑$x_p=\pi_p(\tilde X)\子集{\mathbb P}^r_k$中的$P\在{\mathbb P}^{r+1}_k\反斜杠\tilde X$。通过引用{B-Sche}证明了$x_p$的上同调和局部性质由$\tildex$关于$p$的割线轨迹$\sigma_p(\tildex)$控制。沿着这一思路,本文给出了$tilde x$的割线分层的几何描述,即${mathbb P}^{r+1}_k$通过割线轨迹类型的分解。我们证明了割线轨迹$\sigma_p(\tildex)$有六种可能,并精确地描述了$\tildex$割线分层的每一层,每一层都是拟射影变体。作为一个应用,我们通过提供一个完整的对$(\tilde X,p)$,其中$\tilde X\子集{\mathbb p}^{r+1}_k$是一个极小度的变种,$p$是$\mathbb p}^{r+1}_k\setminus\tilde X$中的一个闭点,$x_p\子集{\mathbb p}^r_k$是一个Del Pezzo变种,得到了所有非正规Del Pezzo变种的分类。
---
英文标题:
《On varieties of almost minimal degree I: Secant loci of rational normal
  scrolls》
---
作者:
M. Brodmann and E. Park
---
最新提交年份:
2009
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Commutative Algebra        交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--

---
英文摘要:
  To complete the classification theory and the structure theory of varieties of almost minimal degree, that is of non-degenerate irreducible projective varieties whose degree exceeds the codimension by precisely 2, a natural approach is to investigate simple projections of varieties of minimal degree. Let $\tilde X \subset {\mathbb P}^{r+1}_K$ be a variety of minimal degree and of codimension at least 2, and consider $X_p = \pi_p (\tilde X) \subset {\mathbb P}^r_K$ where $p \in {\mathbb P}^{r+1}_K \backslash \tilde X$. By \cite{B-Sche}, it turns out that the cohomological and local properties of $X_p$ are governed by the secant locus $\Sigma_p (\tilde X)$ of $\tilde X$ with respect to $p$.   Along these lines, the present paper is devoted to give a geometric description of the secant stratification of $\tilde X$, that is of the decomposition of ${\mathbb P}^{r+1}_K$ via the types of secant loci. We show that there are exactly six possibilities for the secant locus $\Sigma_p (\tilde X)$, and we precisely describe each stratum of the secant stratification of $\tilde X$, each of which turns out to be a quasi-projective variety.   As an application, we obtain the classification of all non-normal Del Pezzo varieties by providing a complete list of pairs $(\tilde X, p)$ where $\tilde X \subset {\mathbb P}^{r+1}_K$ is a variety of minimal degree, $p$ is a closed point in $\mathbb P^{r+1}_K \setminus \tilde X$ and $X_p \subset {\mathbb P}^r _K$ is a Del Pezzo variety.
---
PDF链接:
https://arxiv.org/pdf/0808.0090
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群