摘要翻译:
本文的目的是利用Nori的方法,在定义在C的子域上的代数簇上构造一个motivic“sheaves”范畴。这个范畴是阿贝尔范畴,它对经典拓扑和其他拓扑的可构造束范畴具有忠实的精确实现函子。此外,在混合Hodge结构的变式范畴中,还存在一个具有实现函子的tannakian子类的motivic局域系统。相反,后者的所有基本几何例子都来自这个母题范畴。
---
英文标题:
《An Abelian Category of Motivic Sheaves》
---
作者:
Donu Arapura
---
最新提交年份:
2012
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
The goal of this paper is to construct a category of motivic "sheaves" on an algebraic variety defined over a subfield of C, using Nori's method. This categoryis abelian and it possesses faithful exact realization functors to the categoriesof constructible sheaves for the classical and etale topologies. Moreover, there is a tannakian subcategory of motivic local systems with a realization functor into the category of variations of mixed Hodge structures. Conversely, all basic geometric examples of the latter come from this motivic category.
---
PDF链接:
https://arxiv.org/pdf/0801.0261