摘要翻译:
互利合作是经济系统中的一个常见部分,因为企业与其他企业进行部分合作往往可以获得更高的可持续利润。虽然合作博弈在20世纪50年代很流行,但最近人们对非合作博弈的兴趣越来越大,尽管合作讨价还价似乎在经济和政治应用中更有用。在本文中,我们假设策略空间和时间对于一个契约是不可分的。在此假设下,我们证明了非对称信息下的策略时空是一个动态弯曲的类Liouville 2膜量子重力面,传统的欧几里得几何不能给出一个适当的反馈纳什平衡。当两个企业的战略在该战略时空内陷入彼此的影响曲率时,就会发生合作。在由大公司主导的经济中,小公司受到大公司的影响。利用Liouville-Feynman路径积分方法确定了在这种情况下小公司的一个最优反馈半合作。
---
英文标题:
《Semicooperation under curved strategy spacetime》
---
作者:
Paramahansa Pramanik and Alan M. Polansky
---
最新提交年份:
2019
---
分类信息:
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Economics 经济学
二级分类:Theoretical Economics 理论经济学
分类描述:Includes theoretical contributions to Contract Theory, Decision Theory, Game Theory, General Equilibrium, Growth, Learning and Evolution, Macroeconomics, Market and Mechanism Design, and Social Choice.
包括对契约理论、决策理论、博弈论、一般均衡、增长、学习与进化、宏观经济学、市场与机制设计、社会选择的理论贡献。
--
---
英文摘要:
Mutually beneficial cooperation is a common part of economic systems as firms in partial cooperation with others can often make a higher sustainable profit. Though cooperative games were popular in 1950s, recent interest in non-cooperative games is prevalent despite the fact that cooperative bargaining seems to be more useful in economic and political applications. In this paper we assume that the strategy space and time are inseparable with respect to a contract. Under this assumption we show that the strategy spacetime is a dynamic curved Liouville-like 2-brane quantum gravity surface under asymmetric information and that traditional Euclidean geometry fails to give a proper feedback Nash equilibrium. Cooperation occurs when two firms' strategies fall into each other's influence curvature in this strategy spacetime. Small firms in an economy dominated by large firms are subject to the influence of large firms. We determine an optimal feedback semi-cooperation of the small firm in this case using a Liouville-Feynman path integral method.
---
PDF链接:
https://arxiv.org/pdf/1912.12146