摘要翻译:
在传统的有源噪声控制(ANC)研究中,往往提取具有带限滤波器系数的声道。这是在探讨非洲人国民大会的结构和位置方面的一个限制。为了解决这一问题,我们提出在ANC研究中使用房间声学模型。作为一个用例,我们演示了使用房间声学模型来实现更好的噪声控制的抗噪声源位置优化。通过数值模拟,我们可以将对消电平提高到7.34dB。所有的代码和结果都可以在Github存储库https://Github.com/cksajil/ancram中获得,以进行可复制的研究。
---
英文标题:
《Effect of Transducer Positioning in Active Noise Control》
---
作者:
C. K. Sajil, C. L. Biji and S. Nair Achuthsankar
---
最新提交年份:
2018
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的
深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
---
英文摘要:
Research in traditional Active Noise Control(ANC) often abstracts acoustic channels with band-limited filter coefficients. This is a limitation in exploring structural and positional aspects of ANC. As a solution to this, we propose the use of room acoustic models in ANC research. As a use case, we demonstrate anti-noise source position optimization using room acoustics models in achieving better noise control. Using numerical simulations, we show that level of cancellation can be improved up to 7.34 dB. All the codes and results are available in the Github repository https://github.com/cksajil/ancram in the spirit of reproducible research.
---
PDF链接:
https://arxiv.org/pdf/1802.10058