摘要翻译:
设$B$是一个幂零矩阵,并假定它的Jordan标准型由一个分区$\lambda$决定。然后知道它的幂零交换子$n_b$是不可约的变体,并且存在唯一的划分$\mu$使得与$\mu$对应的幂零矩阵的轨道与$n_b$的交在$n_b$中是稠密的。我们证明了由$d(\lambda)=\mu$给出的映射$d$是幂等映射。这回答了Basili和Iarrobino的一个问题,并部分回答了Panyushev的一个问题。在证明中,我们使用了这样一个事实:对于N_B$中的一般矩阵$a\,$a$和$B$生成的代数是Gorenstein代数。因此,通勤幂零矩阵的一般对生成一个Gorenstein代数。如果$D(\lambda)$最多有两个部分,我们也用$\lambda$来描述$D(\lambda)$。
---
英文标题:
《On pairs of commuting nilpotent matrices》
---
作者:
Toma\v{z} Ko\v{s}ir, Polona Oblak
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let $B$ be a nilpotent matrix and suppose that its Jordan canonical form is determined by a partition $\lambda$. Then it is known that its nilpotent commutator $N_B$ is an irreducible variety and that there is a unique partition $\mu$ such that the intersection of the orbit of nilpotent matrices corresponding to $\mu$ with $N_B$ is dense in $N_B$. We prove that map $D$ given by $D(\lambda)=\mu$ is an idempotent map. This answers a question of Basili and Iarrobino and gives a partial answer to a question of Panyushev. In the proof, we use the fact that for a generic matrix $A \in N_B$ the algebra generated by $A$ and $B$ is a Gorenstein algebra. Thus, a generic pair of commuting nilpotent matrices generates a Gorenstein algebra. We also describe $D(\lambda)$ in terms of $\lambda$ if $D(\lambda)$ has at most two parts.
---
PDF链接:
https://arxiv.org/pdf/0712.2813