摘要翻译:
近年来,
深度学习提高了许多音乐信息检索(MIR)系统的性能。然而,音乐的复杂层次安排使得端到端学习对于某些MIR任务来说变得困难--一个非常深入和灵活的处理链对音乐音频的某些方面建模是必要的。涉及音调、和弦和节奏的表征是音乐的基本组成部分。本文讨论了如何将它们作为MIR中的中间目标和先验信息来处理结构复杂的学习问题,将学习模块连接在一个有向无环图中。本文认为,这种被称为深度分层学习(DLL)的推理策略可以通过(1)--在加工过程中加强中间表征的有效性和不变性,(2)--让所推断的表征建立音乐组织来支持更高层次的不变性加工来帮助概括。模块化音乐处理的背景与先前出版物的概述一起提供。在DLL的上下文中回顾了来自信息处理的相关概念,如剪枝、跳过连接和性能监控。最后进行了测试,显示了分层学习如何影响基音跟踪。研究表明,特别是在提取的帧基频的指导下,偏移量更容易检测。
---
英文标题:
《Deep Layered Learning in MIR》
---
作者:
Anders Elowsson
---
最新提交年份:
2018
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
---
英文摘要:
Deep learning has boosted the performance of many music information retrieval (MIR) systems in recent years. Yet, the complex hierarchical arrangement of music makes end-to-end learning hard for some MIR tasks - a very deep and flexible processing chain is necessary to model some aspect of music audio. Representations involving tones, chords, and rhythm are fundamental building blocks of music. This paper discusses how these can be used as intermediate targets and priors in MIR to deal with structurally complex learning problems, with learning modules connected in a directed acyclic graph. It is suggested that this strategy for inference, referred to as deep layered learning (DLL), can help generalization by (1) - enforcing the validity and invariance of intermediate representations during processing, and by (2) - letting the inferred representations establish the musical organization to support higher-level invariant processing. A background to modular music processing is provided together with an overview of previous publications. Relevant concepts from information processing, such as pruning, skip connections, and performance supervision are reviewed within the context of DLL. A test is finally performed, showing how layered learning affects pitch tracking. It is indicated that especially offsets are easier to detect if guided by extracted framewise fundamental frequencies.
---
PDF链接:
https://arxiv.org/pdf/1804.07297