摘要翻译:
我们提出了一个新的规范测试族,称为核条件矩(KCM)测试。我们的测试建立在再生核Hilbert空间(RKHS)中条件矩限制的一种新的表示形式上,称为条件矩嵌入(CMME)。将条件力矩约束转化为无条件约束的连续体后,将测试统计量定义为RKHS单位球内的最大力矩约束(MMR)。证明了MMR不仅充分刻画了原条件矩约束,使假设检验和参数估计具有一致性,而且具有易于计算的解析表达式和闭式渐近分布。我们的实证研究表明,与现有的检验相比,KCM检验具有很好的有限样本性能。
---
英文标题:
《Kernel Conditional Moment Test via Maximum Moment Restriction》
---
作者:
Krikamol Muandet, Wittawat Jitkrittum, Jonas K\"ubler
---
最新提交年份:
2020
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
We propose a new family of specification tests called kernel conditional moment (KCM) tests. Our tests are built on a novel representation of conditional moment restrictions in a reproducing kernel Hilbert space (RKHS) called conditional moment embedding (CMME). After transforming the conditional moment restrictions into a continuum of unconditional counterparts, the test statistic is defined as the maximum moment restriction (MMR) within the unit ball of the RKHS. We show that the MMR not only fully characterizes the original conditional moment restrictions, leading to consistency in both hypothesis testing and parameter estimation, but also has an analytic expression that is easy to compute as well as closed-form asymptotic distributions. Our empirical studies show that the KCM test has a promising finite-sample performance compared to existing tests.
---
PDF链接:
https://arxiv.org/pdf/2002.09225