全部版块 我的主页
论坛 经济学人 二区 外文文献专区
309 0
2022-03-16
摘要翻译:
从最优化问题的角度出发,提出了一种确定人工絮凝工艺参数的有效方法。我们数值研究了遗传算法(GAs)在“零碰撞”和“无破碎”约束下确定最优参数集,如Reynolds(1987)的三个基本相互作用的权重。我们选择了在典型的八哥群中可以经验观察到的各向异性的γ-值作为遗传算法的适应度函数(能量函数)。我们证实了遗传算法成功地找到了具有大的gamma值导致强各向异性的解。数值经验表明,该方法可以使我们在个人计算机上进行更逼真、更有效的椋鸟人工群集。我们还评估了Agent中两种不同类型的交互,即交互的度量定义和拓扑定义。我们证实了拓扑定义比度量定义更能解释经验证据。
---
英文标题:
《Optimization of artificial flockings by means of anisotropy measurements》
---
作者:
Motohiro Makiguchi, Jun-ichi Inoue
---
最新提交年份:
2011
---
分类信息:

一级分类:Physics        物理学
二级分类:Biological Physics        生物物理学
分类描述:Molecular biophysics, cellular biophysics, neurological biophysics, membrane biophysics, single-molecule biophysics, ecological biophysics, quantum phenomena in biological systems (quantum biophysics), theoretical biophysics, molecular dynamics/modeling and simulation, game theory, biomechanics, bioinformatics, microorganisms, virology, evolution, biophysical methods.
分子生物物理、细胞生物物理、神经生物物理、膜生物物理、单分子生物物理、生态生物物理、生物系统中的量子现象(量子生物物理)、理论生物物理、分子动力学/建模与模拟、博弈论、生物力学、生物信息学、微生物、病毒学、进化论、生物物理方法。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Physics        物理学
二级分类:Adaptation and Self-Organizing Systems        自适应和自组织系统
分类描述:Adaptation, self-organizing systems, statistical physics, fluctuating systems, stochastic processes, interacting particle systems, machine learning
自适应,自组织系统,统计物理,波动系统,随机过程,相互作用粒子系统,机器学习
--

---
英文摘要:
  An effective procedure to determine the optimal parameters appearing in artificial flockings is proposed in terms of optimization problems. We numerically examine genetic algorithms (GAs) to determine the optimal set of parameters such as the weights for three essential interactions in BOIDS by Reynolds (1987) under `zero-collision' and `no-breaking-up' constraints. As a fitness function (the energy function) to be maximized by the GA, we choose the so-called the $\gamma$-value of anisotropy which can be observed empirically in typical flocks of starling. We confirm that the GA successfully finds the solution having a large $\gamma$-value leading-up to a strong anisotropy. The numerical experience shows that the procedure might enable us to make more realistic and efficient artificial flocking of starling even in our personal computers. We also evaluate two distinct types of interactions in agents, namely, metric and topological definitions of interactions. We confirmed that the topological definition can explain the empirical evidence much better than the metric definition does.
---
PDF链接:
https://arxiv.org/pdf/1011.0362
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群