摘要翻译:
通过对动态贝叶斯网络进行灵敏度分析,可以研究参数不准确的影响。在我们以前的工作中详细描述了所得到的灵敏度函数之后,我们现在从一个阈值决策模型的角度研究了参数不准确对推荐决策的影响。我们详细说明了从条件概率表中改变单个和多个参数的影响,并给出了一个确定界限的计算过程,在界限之间可以改变对这些参数的评估而不引起推荐决策的改变。我们通过传染病领域中的一个现实生活动态网络来说明所涉及的各种概念。
---
英文标题:
《Sensitivity Analysis for Threshold Decision Making with Dynamic Networks》
---
作者:
Theodore Charitos, Linda C. van der Gaag
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Computational Engineering, Finance, and Science 计算工程、金融和科学
分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。
--
---
英文摘要:
The effect of inaccuracies in the parameters of a dynamic Bayesian network can be investigated by subjecting the network to a sensitivity analysis. Having detailed the resulting sensitivity functions in our previous work, we now study the effect of parameter inaccuracies on a recommended decision in view of a threshold decision-making model. We detail the effect of varying a single and multiple parameters from a conditional probability table and present a computational procedure for establishing bounds between which assessments for these parameters can be varied without inducing a change in the recommended decision. We illustrate the various concepts involved by means of a real-life dynamic network in the field of infectious disease.
---
PDF链接:
https://arxiv.org/pdf/1206.6818