全部版块 我的主页
论坛 经济学人 二区 外文文献专区
942 1
2022-03-17
摘要翻译:
随机模型预测控制(SMPC)是解决不确定干扰下复杂控制问题的一种有前途的方法。然而,传统的SMPC方法要么需要精确的概率分布知识,要么依赖于大量生成的表示不确定性的场景。本文提出了一种新的基于场景的SMPC方法,利用机器学习技术从现有数据中主动学习数据驱动的不确定性集。然后提出了一个系统的过程,进一步校准不确定性集,并给出了适当的概率保证。由此得到的数据驱动不确定性集比传统的基于规范的不确定性集更紧凑,并有助于减少控制行为的保守性。同时,该方法比传统的基于场景的SMPC方法需要更少的数据样本,从而增强了SMPC的实用性。最后将最优控制问题转化为一个单阶段鲁棒优化问题,通过推导鲁棒对应问题可以有效地求解该问题。文中还详细讨论了系统的可行性和稳定性问题。通过一个双质点弹簧系统和一个不确定扰动下的建筑能量控制问题,验证了该方法的有效性。
---
英文标题:
《A data-driven robust optimization approach to scenario-based stochastic
  model predictive control》
---
作者:
Chao Shang and Fengqi You
---
最新提交年份:
2019
---
分类信息:

一级分类:Mathematics        数学
二级分类:Optimization and Control        优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Computer Science        计算机科学
二级分类:Systems and Control        系统与控制
分类描述:cs.SY is an alias for eess.SY. This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
cs.sy是eess.sy的别名。本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Systems and Control        系统与控制
分类描述:This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--

---
英文摘要:
  Stochastic model predictive control (SMPC) has been a promising solution to complex control problems under uncertain disturbances. However, traditional SMPC approaches either require exact knowledge of probabilistic distributions, or rely on massive scenarios that are generated to represent uncertainties. In this paper, a novel scenario-based SMPC approach is proposed by actively learning a data-driven uncertainty set from available data with machine learning techniques. A systematical procedure is then proposed to further calibrate the uncertainty set, which gives appropriate probabilistic guarantee. The resulting data-driven uncertainty set is more compact than traditional norm-based sets, and can help reducing conservatism of control actions. Meanwhile, the proposed method requires less data samples than traditional scenario-based SMPC approaches, thereby enhancing the practicability of SMPC. Finally the optimal control problem is cast as a single-stage robust optimization problem, which can be solved efficiently by deriving the robust counterpart problem. The feasibility and stability issue is also discussed in detail. The efficacy of the proposed approach is demonstrated through a two-mass-spring system and a building energy control problem under uncertain disturbances.
---
PDF链接:
https://arxiv.org/pdf/1807.05146
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2022-4-25 16:12:18
太难
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群