摘要翻译:
Casimir力是边界插入引起真空零点能变化的一种表现形式。我们给出了如何通过考虑边界抑制的真空涨落来计算Casimir力,并重新推导了一系列几何构型的标量Casimir效应。对于平面情况,自动找到有限的万向力。对于弯曲几何,我们遇到了形式上的发散表达式,我们认为这主要是由于边界的发散自能对力的贡献。通过计算固定周长的二维楔-弧几何结构的影响,支持了这一思想。
---
英文标题:
《On the calculation of the Casimir forces》
---
作者:
Eugene B. Kolomeisky and Joseph P. Straley
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Other Condensed Matter 其他凝聚态物质
分类描述:Work in condensed matter that does not fit into the other cond-mat classifications
在不适合其他cond-mat分类的凝聚态物质中工作
--
一级分类:Physics 物理学
二级分类:High Energy Physics - Theory 高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
一级分类:Physics 物理学
二级分类:Quantum Physics 量子物理学
分类描述:Description coming soon
描述即将到来
--
---
英文摘要:
Casimir forces are a manifestation of the change in the zero-point energy of the vacuum caused by the insertion of boundaries. We show how the Casimir force can be computed by consideration of the vacuum fluctuations that are suppressed by the boundaries, and rederive the scalar Casimir effects for a series of geometries. For the planar case a finite universal force is automatically found. For curved geometries formally divergent expressions are encountered which we argue are largely due to the divergent self-energy of the boundary contributing to the force. This idea is supported by computing the effect for a fixed perimeter wedge-arc geometry in two dimensions.
---
PDF链接:
https://arxiv.org/pdf/712.1974