摘要翻译:
我们将在这里考虑的问题是“什么是AI?”以及“我们怎样才能制造AI”。在这里,我们将提出人工智能的定义,从多智能体系统。这意味着在这里你不会找到“AI是什么”这个问题的新答案,而是一个以新形式出现的旧答案。
人工智能定义的这种新形式对于多智能体系统理论是有意义的,因为它使我们更好地理解这个理论。更重要的是,这项工作将有助于我们回答第二个问题。我们想做一个程序,这是能够构建其环境的模型。每一个多Agent模型都等价于一个单Agent模型,但是多Agent模型更自然,因此更容易发现。
---
英文标题:
《The Definition of AI in Terms of Multi Agent Systems》
---
作者:
Dimiter Dobrev
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
The questions which we will consider here are "What is AI?" and "How can we make AI?". Here we will present the definition of AI in terms of multi-agent systems. This means that here you will not find a new answer to the question "What is AI?", but an old answer in a new form. This new form of the definition of AI is of interest for the theory of multi-agent systems because it gives us better understanding of this theory. More important is that this work will help us answer the second question. We want to make a program which is capable of constructing a model of its environment. Every multi-agent model is equivalent to a single-agent model but multi-agent models are more natural and accordingly more easily discoverable.
---
PDF链接:
https://arxiv.org/pdf/1210.0887