全部版块 我的主页
论坛 经济学人 二区 外文文献专区
498 0
2022-03-18
摘要翻译:
我们构造了两个新的有限域扩张基族。第一族中的基,即所谓的椭圆基,不是很正规的基,但它们允许快速的Frobenius幂运算,同时保留稀疏的乘法公式。在第二族基中,所谓正规椭圆基是正规基,允许快速(准线性)算术。我们证明了所有的扩展都承认这类模型。
---
英文标题:
《Elliptic periods for finite fields》
---
作者:
Jean-Marc Couveignes and Reynald Lercier
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Number Theory        数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  We construct two new families of basis for finite field extensions. Basis in the first family, the so-called elliptic basis, are not quite normal basis, but they allow very fast Frobenius exponentiation while preserving sparse multiplication formulas. Basis in the second family, the so-called normal elliptic basis are normal basis and allow fast (quasi linear) arithmetic. We prove that all extensions admit models of this kind.
---
PDF链接:
https://arxiv.org/pdf/0802.0165
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群