全部版块 我的主页
论坛 经济学人 二区 外文文献专区
256 0
2022-04-04
摘要翻译:
本文研究算术亏格$G$的超椭圆曲线$C$上的完全线性级数。设$a$是$C$上唯一的行束,使得$a$是$G^12$,并设$\Mathcal{L}$是$C$上度数为$D$的行束。那么$\mathcal{L}$可以分解为$\mathcal{L}=a^m\o乘以b$其中$m$是满足$h^0(C,\mathcal{L}\o乘以a^{-m})\neq0$的最大整数。设$B={deg}(B)$。我们说\textIt{}$\mathcal{L}$的因式分解类型是$(m,b)$。我们在本文中的主要结果断言$(m,b)$对许多关于$\Mathcal{L}$的自然问题给出了精确的回答。
---
英文标题:
《Complete Linear Series on a Hyperelliptic Curve》
---
作者:
Euisung Park
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  In this paper we study complete linear series on a hyperelliptic curve $C$ of arithmetic genus $g$. Let $A$ be the unique line bundle on $C$ such that $|A|$ is a $g^1_2$, and let $\mathcal{L}$ be a line bundle on $C$ of degree $d$. Then $\mathcal{L}$ can be factorized as $\mathcal{L} = A^m \otimes B$ where $m$ is the largest integer satisfying $H^0 (C,\mathcal{L} \otimes A^{-m}) \neq 0$. Let $b = {deg}(B)$. We say that \textit{the factorization type of} $\mathcal{L}$ is $(m,b)$. Our main results in this paper assert that $(m,b)$ gives a precise answer for many natural questions about $\mathcal{L}$.
---
PDF链接:
https://arxiv.org/pdf/0808.0113
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群