摘要翻译:
设R是一个不等特征的离散赋值环,它包含一个本原p^2次单位根。如果K是R的分式域,则众所周知(Z/p^2Z)_K同构于\mu_{p^2,K}。我们证明了在一般纤维(即(Z/p^2Z)_k的一个模型)上,同构于(Z/p^2Z)_k的p^2阶有限平坦r-群格式是与Kummer序列通约重合的短精确序列中的核。我们将明确地描述和分类这样的模型。
---
英文标题:
《Models of Z/p^2 Z over a d.v.r. of unequal characteristic》
---
作者:
Dajano Tossici
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
Let R be a discrete valuation ring of unequal characteristic which contains a primitive p^2-th root of unity. If K is the fraction field of R, it is well known that (Z/p^2 Z)_K is isomorphic to \mu_{p^2,K}. We prove that any finite and flat R-group scheme of order p^2 isomorphic to (Z/p^2 Z)_K on the generic fiber (i.e. a model of (Z/p^2 Z)_K), is the kernel in a short exact sequence which generically coincides with the Kummer sequence. We will explicitly describe and classify such models.
---
PDF链接:
https://arxiv.org/pdf/0803.3702