摘要翻译:
本文的目的是在一个非对易的环境中提出阿拉克洛夫理论。更确切地说,我们关注的是非交换算术曲面。在非交换算术曲面上引入算术交理论的一个版本,并在此基础上证明了一个算术Riemann-Roch定理。
---
英文标题:
《Arakelov theory of noncommutative arithmetic surfaces》
---
作者:
Thomas Borek
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
The purpose of this paper is to initiate Arakelov theory in a noncommutative setting. More precisely, we are concerned with noncommutative arithmetic surfaces. We introduce a version of arithmetic intersection theory on noncommutative arithmetic surfaces and we prove an arithmetic Riemann-Roch theorem in this setup.
---
PDF链接:
https://arxiv.org/pdf/0801.1225