摘要翻译:
设$M$是闭复流形,$TM$是它的全纯切丛。我们证明了如果切丛的整体全纯截面生成每个纤维,则$M$是复齐次流形。我们的证明依赖于Carnot-Caratheodory空间中Chow-Rashevskii定理的复数形式。
---
英文标题:
《Complex manifolds with generating tangent bundles》
---
作者:
Renyi Ma
---
最新提交年份:
2012
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Differential Geometry 微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
---
英文摘要:
Let $M$ be a close complex manifold and $TM$ its holomorphic tangent bundle. We prove that if the global holomorphic sections of tangent bundle generate each fibre, then $M$ is a complex homogeneous manifold. Our proof depends on the complex version of Chow-Rashevskii theorem in Carnot-Caratheodory spaces.
---
PDF链接:
https://arxiv.org/pdf/0808.2690