摘要翻译:
研究了随机网络上零程过程(ZRP)的统计性质。我们导出了不相关随机图系综中ZRP稳态下粒子分布(也称为节点占用分布)的解析表达式。我们分析了这种分布对节点度分布的依赖关系。特别地,我们证明了当适当地调整度分布时,粒子的分布可以得到无标度涨落。这种涨落导致粒子的分布呈幂律,就像齐次图上跳跃率u(m)=1+b/m的ZRP一样。
---
英文标题:
《Power laws in zero-range processes on random networks》
---
作者:
B. Waclaw, Z. Burda, W. Janke
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Other Condensed Matter 其他凝聚态物质
分类描述:Work in condensed matter that does not fit into the other cond-mat classifications
在不适合其他cond-mat分类的凝聚态物质中工作
--
---
英文摘要:
We study statistical properties of a zero-range process (ZRP) on random networks. We derive an analytic expression for the distribution of particles (also called node occupation distribution) in the steady state of the ZRP in the ensemble of uncorrelated random graphs. We analyze the dependence of this distribution on the node-degree distribution. In particular, we show that when the degree distribution is tuned properly, one can obtain scale-free fluctuations in the distribution of particles. Such fluctuations lead to a power law in the distribution of particles, just like in the ZRP with the hopping rate u(m)=1+b/m on homogeneous graphs.
---
PDF链接:
https://arxiv.org/pdf/802.2688