摘要翻译:
本文从拉格朗日和欧拉两个角度研究了二维湍流逆能级和直拟能级湍流的功率涨落统计特性。适当定义的无量纲幂的概率密度函数(PDF)是强非高斯的,具有非对称指数尾。这种分布可以用相关正态变量乘积的分布来建模,从而可以导出尾部的渐近性。无量纲功率的PDF表现出经验涨落关系。从功率PDF的渐近形式导出了熵产率的表达式,并与实测的熵产率有很好的一致性。
---
英文标题:
《Local power fluctuations in two-dimensional turbulence》
---
作者:
M. M. Bandi and C. Connaughton
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
The statistics of power fluctuations are studied in simulations of two-dimensional turbulence in both inverse (energy) and direct (enstrophy) cascade regimes from both Lagrangian and Eulerian perspectives. The probability density function (PDF) of the appropriately defined dimensionless power is strongly non-gaussian with asymmetric exponential tails. This distribution can be modeled by the distribution of the product of correlated normal variables allowing a derivation of the asymptotics of the tails. The PDF of the dimensionless power is shown to exhibit an empirical Fluctuation Relation. An expression for the entropy production rate is deduced from the asymptotic form of the power PDF and is found to agree very well with the measured entropy rate.
---
PDF链接:
https://arxiv.org/pdf/710.3368