摘要翻译:
本研究探讨制作音乐对青少年发展的剂量-反应效应。辨识是基于条件独立性假设,估计是使用最新的双机器学习估计器实现的。该研究提出了解决这些新方法所产生的两个高度实际相关的问题:(i)如何在
机器学习部分研究估计对调整参数选择的敏感性?(ii)如何评估高维环境中的协变量平衡?结果表明,客观测量的认知技能的提高至少需要中等强度,而学校成绩的提高已经观察到低强度的练习。
---
英文标题:
《A Double Machine Learning Approach to Estimate the Effects of Musical
  Practice on Student's Skills》
---
作者:
Michael C. Knaus
---
最新提交年份:
2019
---
分类信息:
一级分类:Economics        经济学
二级分类:Econometrics        计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
---
英文摘要:
  This study investigates the dose-response effects of making music on youth development. Identification is based on the conditional independence assumption and estimation is implemented using a recent double machine learning estimator. The study proposes solutions to two highly practically relevant questions that arise for these new methods: (i) How to investigate sensitivity of estimates to tuning parameter choices in the machine learning part? (ii) How to assess covariate balancing in high-dimensional settings? The results show that improvements in objectively measured cognitive skills require at least medium intensity, while improvements in school grades are already observed for low intensity of practice. 
---
PDF链接:
https://arxiv.org/pdf/1805.10300