摘要翻译:
无线网络虚拟化是下一代(5G)无线网络的一项重要技术。在蜂窝网络中引入虚拟化的一个关键优点是服务提供商可以健壮地共享虚拟化的网络资源(例如,基础设施和频谱),以扩展覆盖范围、增加容量和降低成本。{然而,无线网络的固有特性,即用户设备(UE)位置和信道条件的不确定性,给网络资源的虚拟化和共享带来了重大挑战。}在此背景下,我们提出了一个基于随机优化的虚拟化框架,该框架能够实现网络资源的健壮共享。我们提出的方案的目标是概率保证UE的服务质量(QoS)需求满足,同时在合理的计算复杂度和可负担的网络开销下最小化服务提供商的成本。
---
英文标题:
《Optimal Virtualization Framework for Cellular Networks with Downlink
Rate Coverage Probability Constraints》
---
作者:
Shubhajeet Chatterjee, Mohammad J Abdel-Rahman and Allen B. MacKenzie
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
Wireless network virtualization is emerging as an important technology for next-generation (5G) wireless networks. A key advantage of introducing virtualization in cellular networks is that service providers can robustly share virtualized network resources (e.g., infrastructure and spectrum) to extend coverage, increase capacity, and reduce costs. {However, the inherent features of wireless networks, i.e., the uncertainty in user equipment (UE) locations and channel conditions impose significant challenges on virtualization and sharing of the network resources.} In this context, we propose a stochastic optimization-based virtualization framework that enables robust sharing of network resources. Our proposed scheme aims at probabilistically guaranteeing UEs' Quality of Service (QoS) demand satisfaction, while minimizing the cost for service providers, with reasonable computational complexity and affordable network overhead.
---
PDF链接:
https://arxiv.org/pdf/1804.0968