摘要翻译:
本文将辛流形的通常(绝对)Gromov-Witten不变量与相对于(辛)因子D计数曲线的不变量进行了比较。我们给出了这些不变量不同的显式例子,尽管它们最初似乎应该一致,例如当计数一类\be\cdotd=0的亏格零曲线时。主要的工具是A.Li-阮发展的形式的分解公式。
---
英文标题:
《Comparing Absolute and relative Gromov--Witten invariants》
---
作者:
Dusa McDuff
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Symplectic Geometry 辛几何
分类描述:Hamiltonian systems, symplectic flows, classical integrable systems
哈密顿系统,辛流,经典可积系统
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
This note compares the usual (absolute) Gromov-Witten invariants of a symplectic manifold with the invariants that count the curves relative to a (symplectic) divisor D. We give explicit examples where these invariants differ even though it seems at first that they should agree, for example when counting genus zero curves in a class \be such that \be\cdot D=0. The main tool is the decomposition formula in the form developed by A. Li--Ruan.
---
PDF链接:
https://arxiv.org/pdf/0809.3534