摘要翻译:
描述了orbifold Gromov-Witten理论的Virasoro约束。将这些约束应用于加权射影栈$\mathbb{P}(1,N)$,$\mathbb{P}(1,1,N)$和$\mathbb{P}(1,1,N)$的次zreo,亏格零轨道Gromov-Witten势,得到了循环Hurwitz-Hodge积分的后代公式。
---
英文标题:
《On Virasoro Constraints for Orbifold Gromov-Witten Theory》
---
作者:
Yunfeng Jiang, Hsian-Hua Tseng
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Symplectic Geometry 辛几何
分类描述:Hamiltonian systems, symplectic flows, classical integrable systems
哈密顿系统,辛流,经典可积系统
--
---
英文摘要:
Virasoro constraints for orbifold Gromov-Witten theory are described. These constraints are applied to the degree zreo, genus zero orbifold Gromov-Witten potentials of the weighted projective stacks $\mathbb{P}(1,N)$, $\mathbb{P}(1,1,N)$ and $\mathbb{P}(1,1,1,N)$ to obtain formulas of descendant cyclic Hurwitz-Hodge integrals.
---
PDF链接:
https://arxiv.org/pdf/0704.2009