摘要翻译:
在R^2有理热带曲线的模空间上定义了热带PSI-类,并在该空间上考虑了PSI-类的交积和求值的回拉。我们给出了一个WDVV方程,该方程足以证明满足一定Psi-和评价条件的曲线的热带数等于相应的经典数。对Mikhalkin的格路径算法进行了推广,提出了一种计算满足一定PSI和评价条件的有理平面热带曲线的算法。
---
英文标题:
《Tropical descendant Gromov-Witten invariants》
---
作者:
Hannah Markwig, Johannes Rau
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
We define tropical Psi-classes on the moduli space of rational tropical curves in R^2 and consider intersection products of Psi-classes and pull-backs of evaluations on this space. We show a certain WDVV equation which is sufficient to prove that tropical numbers of curves satisfying certain Psi- and evaluation conditions are equal to the corresponding classical numbers. We present an algorithm that generalizes Mikhalkin's lattice path algorithm and counts rational plane tropical curves satisfying certain Psi- and evaluation conditions.
---
PDF链接:
https://arxiv.org/pdf/0809.1102