摘要翻译:
在南印度,有一种传统的圆点线画模式,称为“kolam”,其中单线画或“无限kolam”提供了非常有趣的数学问题。例如,我们解决以下简单的问题:对于给定的点网格模式,我们可以绘制多少个无限Kolam模式?最简单的方法是在判断是否为无限大的Kolam的同时画出Kolam的可能模式。这样的搜索问题似乎是NP完全的。然而,它肯定不是。本文主要研究了点阵的菱形网格(1-3-5-3-1)和(1-3-5-7-5-3-1)。通过对无穷大Kolam的纽结理论描述,我们给出了如何找到解,从而不可避免地给出了无穷大Kolam不是NP完全的陈述的证明简图。它的进一步讨论将在最后一节中给出。
---
英文标题:
《Solving Infinite Kolam in Knot Theory》
---
作者:
Yukitaka Ishimoto
---
最新提交年份:
2007
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Discrete Mathematics 离散数学
分类描述:Covers combinatorics, graph theory, applications of probability. Roughly includes material in ACM Subject Classes G.2 and G.3.
涵盖组合学,图论,概率论的应用。大致包括ACM学科课程G.2和G.3中的材料。
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
In south India, there are traditional patterns of line-drawings encircling dots, called ``Kolam'', among which one-line drawings or the ``infinite Kolam'' provide very interesting questions in mathematics. For example, we address the following simple question: how many patterns of infinite Kolam can we draw for a given grid pattern of dots? The simplest way is to draw possible patterns of Kolam while judging if it is infinite Kolam. Such a search problem seems to be NP complete. However, it is certainly not. In this paper, we focus on diamond-shaped grid patterns of dots, (1-3-5-3-1) and (1-3-5-7-5-3-1) in particular. By using the knot-theory description of the infinite Kolam, we show how to find the solution, which inevitably gives a sketch of the proof for the statement ``infinite Kolam is not NP complete.'' Its further discussion will be given in the final section.
---
PDF链接:
https://arxiv.org/pdf/710.1976