摘要翻译:
本文给出了一个精确计数低维正则格上哈密顿链个数的算法。根据定义,这些是k个不相交路径的集合,它们的并点恰好访问每个格顶点一次。著名的哈密顿电路和游动分别作为特例K=0和K=1出现。在二维中,我们枚举L×L平方格上的链到L=12,遍历到L=17,回路到L=20。给出了三维的一些结果。利用我们的数据,我们提取了几个物理感兴趣的量。
---
英文标题:
《Exact enumeration of Hamiltonian circuits, walks, and chains in two and
three dimensions》
---
作者:
Jesper Lykke Jacobsen (LPTMS, SPhT)
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We present an algorithm for enumerating exactly the number of Hamiltonian chains on regular lattices in low dimensions. By definition, these are sets of k disjoint paths whose union visits each lattice vertex exactly once. The well-known Hamiltonian circuits and walks appear as the special cases k=0 and k=1 respectively. In two dimensions, we enumerate chains on L x L square lattices up to L=12, walks up to L=17, and circuits up to L=20. Some results for three dimensions are also given. Using our data we extract several quantities of physical interest.
---
PDF链接:
https://arxiv.org/pdf/709.2322