摘要翻译:
我们采用类似于Kallsen和Muhle-Karbe(2010)的影子价格方法,重新考察了Davis和Norman(1990)和Shreve和Soner(1994)的最优投资和消费模型。利用无交易费用模型的完备性,将该奇异随机控制问题的Hamilton-Jacobi-Bellman方程转化为带积分约束的一阶常微分方程的非标准自由边界问题。在证明了自由边界问题有光滑解的基础上,我们利用自由边界问题以一种自包含的方式构造了原最优投资/消费问题的解,而不求助于动态规划原理。此外,我们给出了值函数为有限的模型参数的显式刻画。
---
英文标题:
《Shadow prices and well-posedness in the problem of optimal investment
and consumption with transaction costs》
---
作者:
Jin Hyuk Choi, Mihai Sirbu, Gordan Zitkovic
---
最新提交年份:
2012
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
---
英文摘要:
We revisit the optimal investment and consumption model of Davis and Norman (1990) and Shreve and Soner (1994), following a shadow-price approach similar to that of Kallsen and Muhle-Karbe (2010). Making use of the completeness of the model without transaction costs, we reformulate and reduce the Hamilton-Jacobi-Bellman equation for this singular stochastic control problem to a non-standard free-boundary problem for a first-order ODE with an integral constraint. Having shown that the free boundary problem has a smooth solution, we use it to construct the solution of the original optimal investment/consumption problem in a self-contained manner and without any recourse to the dynamic programming principle. Furthermore, we provide an explicit characterization of model parameters for which the value function is finite.
---
PDF链接:
https://arxiv.org/pdf/1204.0305