全部版块 我的主页
论坛 经济学人 二区 外文文献专区
395 0
2022-03-23
摘要翻译:
欧文点的概念,在瓜迪奥拉等人中引入。(2009),是一个很有吸引力的解决方案概念,对于生产-库存博弈(PI-博弈)始终属于其核心。欧文点允许游戏中的所有玩家以最小的成本运营,但它没有考虑到关键玩家对其追随者(球迷)的成本降低。因此,它可能被视为一种利他主义的分配,对重要的球员来说,这是可以批评的。本文的目的有两个:一是研究PI-对策核的结构和复杂性;二是针对Owen点的不足,提出新的PI-对策核分配。对于第一个目标,我们进一步研究了PI-博弈的分析,分析了PI-博弈的核心结构和算法复杂度。具体地说,我们证明了PI-对策核心的极值点个数是关于玩家个数的指数。另一方面,我们提出并描述了一种新的核心分配,即欧米茄点,它补偿了关键球员在降低球迷成本方面的作用。此外,我们定义了另一个解的概念,分配的交换集(QPQ-集),它是基于Owen点和Omega点。在所有的分配中,我们强调了所谓的所罗门QPQ分配,并给出了该分配与Shapley值和核仁一致的一些必要条件。
---
英文标题:
《Quid Pro Quo allocations in Production-Inventory games》
---
作者:
Luis Guardiola, Ana Meca and Justo Puerto
---
最新提交年份:
2020
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Computer Science and Game Theory        计算机科学与博弈论
分类描述:Covers all theoretical and applied aspects at the intersection of computer science and game theory, including work in mechanism design, learning in games (which may overlap with Learning), foundations of agent modeling in games (which may overlap with Multiagent systems), coordination, specification and formal methods for non-cooperative computational environments. The area also deals with applications of game theory to areas such as electronic commerce.
涵盖计算机科学和博弈论交叉的所有理论和应用方面,包括机制设计的工作,游戏中的学习(可能与学习重叠),游戏中的agent建模的基础(可能与多agent系统重叠),非合作计算环境的协调、规范和形式化方法。该领域还涉及博弈论在电子商务等领域的应用。
--
一级分类:Economics        经济学
二级分类:Theoretical Economics        理论经济学
分类描述:Includes theoretical contributions to Contract Theory, Decision Theory, Game Theory, General Equilibrium, Growth, Learning and Evolution, Macroeconomics, Market and Mechanism Design, and Social Choice.
包括对契约理论、决策理论、博弈论、一般均衡、增长、学习与进化、宏观经济学、市场与机制设计、社会选择的理论贡献。
--

---
英文摘要:
  The concept of Owen point, introduced in Guardiola et al. (2009), is an appealing solution concept that for Production-Inventory games (PI-games) always belongs to their core. The Owen point allows all the players in the game to operate at minimum cost but it does not take into account the cost reduction induced by essential players over their followers (fans). Thus, it may be seen as an altruistic allocation for essential players what can be criticized. The aim this paper is two-fold: to study the structure and complexity of the core of PI-games and to introduce new core allocations for PI-games improving the weaknesses of the Owen point. Regarding the first goal, we advance further on the analysis of PI-games and we analyze its core structure and algorithmic complexity. Specifically, we prove that the number of extreme points of the core of PI-games is exponential on the number of players. On the other hand, we propose and characterize a new core-allocation, the Omega point, which compensates the essential players for their role on reducing the costs of their fans. Moreover, we define another solution concept, the Quid Pro Quo set (QPQ-set) of allocations, which is based on the Owen and Omega points. Among all the allocations in this set, we emphasize what we call the Solomonic QPQ allocation and we provide some necessary conditions for the coincidence of that allocation with the Shapley value and the Nucleolus.
---
PDF链接:
https://arxiv.org/pdf/2002.00953
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群