摘要翻译:
将欧几里得路径积分方法应用于一个考虑有限尺寸($l$)效应的量子隧穿模型。用Jacobi椭圆函数求得了双势阱Euler-Lagrange方程的通解。反周期瞬子插值于量子区域内任意有限L的势极小值之间,推广了无限尺寸情形下众所周知的(反)扭结解。详细推导了由量子涨落贡献引起的泛函行列式。给出了有限尺寸半经典路径积分的显式公式。
---
英文标题:
《Instanton Solution of a Nonlinear Potential in Finite Size》
---
作者:
Marco Zoli
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
The Euclidean path integral method is applied to a quantum tunneling model which accounts for finite size ($L$) effects. The general solution of the Euler Lagrange equation for the double well potential is found in terms of Jacobi elliptic functions. The antiperiodic instanton interpolates between the potential minima at any finite $L$ inside the quantum regime and generalizes the well known (anti)kink solution of the infinite size case. The derivation of the functional determinant, stemming from the quantum fluctuation contribution, is given in detail. The explicit formula for the finite size semiclassical path integral is presented.
---
PDF链接:
https://arxiv.org/pdf/802.0905