摘要翻译:
本文在模型预测控制(MPC)的基础上,提出了一种新的控制策略&预测网络控制(PNC)来控制无线通信网络(分组级)。与通常的短视策略相比,使用提前一步预测,PNC在一个扩展的范围内预测系统的未来行为,从而促进性能的提高。我们定义了一个先进的系统模型,其中我们使用马尔可夫链结合伯努利试验来建模网络的随机分量。此外,我们还介绍了该算法,并给出了两个详细的仿真例子,与标准策略相比,该算法的性能得到了普遍的改善,在稳定域内也有了增益。
---
英文标题:
《Predictive Network Control and Throughput Sub-Optimality of MaxWeight》
---
作者:
Richard Schoeffauer and Gerhard Wunder
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
---
英文摘要:
We present a novel control policy, called Predictive Network Control (PNC) to control wireless communication networks (on packet level), based on paradigms of Model Predictive Control (MPC). In contrast to common myopic policies, who use one step ahead prediction, PNC predicts the future behavior of the system for an extended horizon, thus facilitating performance gains. We define an advanced system model in which we use a Markov chain in combination with a Bernoulli trial to model the stochastic components of the network. Furthermore we introduce the algorithm and present two detailed simulation examples, which show general improved performance and a gain in stability region compared to the standard policy.
---
PDF链接:
https://arxiv.org/pdf/1804.00481