全部版块 我的主页
论坛 经济学人 二区 外文文献专区
656 0
2022-03-27
摘要翻译:
具有复杂约束的布图设计是一个具有挑战性的问题,由于解的非唯一性和传统的基于优化的方法难以将约束融入其中。本文提出了一种基于最近发展起来的机器学习技术--变分自动编码器(VAE)的设计方法。我们利用VAE的学习能力来学习约束,并利用VAE的生成能力来生成自动满足所有约束的候选设计。因此,在设计阶段不需要施加任何约束。此外,我们还表明VAE网络也能够学习设计问题的基本物理,从而导致一个高效的设计工具,一旦网络构建,就不需要任何物理模拟。我们在两种情况下证明了该方法的性能:表面扩散诱导形貌变化的逆设计和用于光学微光刻的掩模设计。
---
英文标题:
《Deep learning based inverse method for layout design》
---
作者:
Yujie Zhang and Wenjing Ye
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Statistics        统计学
二级分类:Machine Learning        机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--

---
英文摘要:
  Layout design with complex constraints is a challenging problem to solve due to the non-uniqueness of the solution and the difficulties in incorporating the constraints into the conventional optimization-based methods. In this paper, we propose a design method based on the recently developed machine learning technique, Variational Autoencoder (VAE). We utilize the learning capability of the VAE to learn the constraints and the generative capability of the VAE to generate design candidates that automatically satisfy all the constraints. As such, no constraints need to be imposed during the design stage. In addition, we show that the VAE network is also capable of learning the underlying physics of the design problem, leading to an efficient design tool that does not need any physical simulation once the network is constructed. We demonstrated the performance of the method on two cases: inverse design of surface diffusion induced morphology change and mask design for optical microlithography.
---
PDF链接:
https://arxiv.org/pdf/1806.03182
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群