摘要翻译:
利用纤维束模型研究了强非均匀性对无序材料断裂的影响。该束由两个纤维子集组成,即纤维的0<α<1的分数是不可破的,而剩下的1-α分数由破断阈值分布表征。在全局负载分担的情况下,我们解析地证明了存在一个临界分量α_c,它将系统的两个性质不同的区域分开:在α_c以下,突发大小分布为幂律,通常的指数Tau=5/2,而在α_c以上,指数变为较低的值Tau=9/4,并出现一个特征大小发散的截止函数。通过对系统宏观响应的分析,我们证明了这种转变是以无序分布为条件的,其中本构曲线具有一个单一的极大值和一个拐点,定义了一种新的通用性击穿现象。
---
英文标题:
《Universality class of fiber bundles with strong heterogeneities》
---
作者:
R.C. Hidalgo, K.Kovacs, I. Pagonabarraga and F. Kun
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
  We study the effect of strong heterogeneities on the fracture of disordered materials using a fiber bundle model. The bundle is composed of two subsets of fibers, i.e. a fraction 0<\alpha<1 of fibers is unbreakable, while the remaining 1-\alpha fraction is characterized by a distribution of breaking thresholds. Assuming global load sharing, we show analytically that there exists a critical fraction of the components \alpha_c which separates two qualitatively different regimes of the system: below \alpha_c the burst size distribution is a power law with the usual exponent \tau=5/2, while above \alpha_c the exponent switches to a lower value \tau=9/4 and a cutoff function occurs with a diverging characteristic size. Analyzing the macroscopic response of the system we demonstrate that the transition is conditioned to disorder distributions where the constitutive curve has a single maximum and an inflexion point defining a novel universality class of breakdown phenomena. 
---
PDF链接:
https://arxiv.org/pdf/802.2695