摘要翻译:
设V_n是(p^1)x…x(p^1)(n次)的Segre嵌入。我们证明了除Sigma3(V4)的维数比期望的维数小1外,较高的割线簇Sigmas(V_n)总是具有期望的维数,而Sigma3(V_4)的维数比期望的维数小1。
---
英文标题:
《Secant Varieties of (P ^1) X .... X (P ^1) (n-times) are NOT Defective
for n \geq 5》
---
作者:
M.V.Catalisano, A.Geramita, A.Gimigliano
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
Let V_n be the Segre embedding of (P^1) x ... X (P^1) (n times). We prove that the higher secant varieties, \sigma_s(V_n), always have the expected dimension, except for \sigma_3(V_4), which is of dimension 1 less than expected.
---
PDF链接:
https://arxiv.org/pdf/0809.1701