摘要翻译:
基于
神经网络中特征激活的Gram矩阵匹配的纹理合成技术在图像领域取得了巨大的成功。本文将这些技术扩展到音频领域。我们证明合成不同的音频纹理是具有挑战性的,并认为这是因为音频数据是相对低维的。因此,我们在原有的语法丢失中引入了两个新的术语:一个保持节奏的自相关术语和一个鼓励优化过程合成独特纹理的多样性术语。我们定量地研究了我们的设计选择对合成音频质量的影响,通过引入一个音频模拟的初始损失,我们称之为VGGish损失。我们表明,在使用该技术合成音频的多样性和质量之间存在一个权衡。我们还进行了一些实验,以定性地研究这些设计选择如何影响合成音频的质量。最后,我们描述了这些结果对音频风格转换问题的启示。
---
英文标题:
《Synthesizing Diverse, High-Quality Audio Textures》
---
作者:
Joseph Antognini, Matt Hoffman, and Ron J. Weiss
---
最新提交年份:
2018
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的
深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
---
英文摘要:
Texture synthesis techniques based on matching the Gram matrix of feature activations in neural networks have achieved spectacular success in the image domain. In this paper we extend these techniques to the audio domain. We demonstrate that synthesizing diverse audio textures is challenging, and argue that this is because audio data is relatively low-dimensional. We therefore introduce two new terms to the original Grammian loss: an autocorrelation term that preserves rhythm, and a diversity term that encourages the optimization procedure to synthesize unique textures. We quantitatively study the impact of our design choices on the quality of the synthesized audio by introducing an audio analogue to the Inception loss which we term the VGGish loss. We show that there is a trade-off between the diversity and quality of the synthesized audio using this technique. We additionally perform a number of experiments to qualitatively study how these design choices impact the quality of the synthesized audio. Finally we describe the implications of these results for the problem of audio style transfer.
---
PDF链接:
https://arxiv.org/pdf/1806.08002