摘要翻译:
我们研究了一个随机博弈,其中一个博弈者试图找到一个策略,使状态过程达到一个可控损失型的目标,无论另一个博弈者选择哪一个行动。本文给出了该问题的一个松弛的几何动态规划原理,并对受控SDE的情形导出了相应的粘性解意义下的动态规划方程。作为一个例子,我们考虑了一个在骑士不确定性下的部分套期保值问题。
---
英文标题:
《Stochastic target games with controlled loss》
---
作者:
Bruno Bouchard, Ludovic Moreau, Marcel Nutz
---
最新提交年份:
2014
---
分类信息:
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
英文摘要:
We study a stochastic game where one player tries to find a strategy such that the state process reaches a target of controlled-loss-type, no matter which action is chosen by the other player. We provide, in a general setup, a relaxed geometric dynamic programming principle for this problem and derive, for the case of a controlled SDE, the corresponding dynamic programming equation in the sense of viscosity solutions. As an example, we consider a problem of partial hedging under Knightian uncertainty.
---
PDF链接:
https://arxiv.org/pdf/1206.6325