摘要翻译:
如果Galois对象生成了局部连通的拓扑,则该拓扑是Galois拓扑。证明了任意连通局部连通topos中的Galois对象的全子范畴是逆2-滤波的2-范畴,并作为topoi的2-滤波双极限构造的应用,证明了每个Galois topos都有一个点。
---
英文标题:
《2-filteredness and the point of every Galois topos》
---
作者:
Eduardo J. Dubuc
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Category Theory 范畴理论
分类描述:Enriched categories, topoi, abelian categories, monoidal categories, homological algebra
丰富范畴,topoi,abelian范畴,monoidal范畴,同调代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
A locally connected topos is a Galois topos if the Galois objects generate the topos. We show that the full subcategory of Galois objects in any connected locally connected topos is an inversely 2-filtered 2-category, and as an application of the construction of 2-filtered bi-limits of topoi, we show that every Galois topos has a point.
---
PDF链接:
https://arxiv.org/pdf/0801.0010