摘要翻译:
存在交易成本的套期保值会导致复杂的优化问题。这些问题通常缺乏封闭形式的解,它们的实现依赖于为特定参数值提供对冲策略的数值方法。本文利用遗传规划算法导出了非线性交易费用下的近最优套期保值策略的显式公式。这些策略在很大的参数值范围内是有效的,并且不需要关于最优套期保值策略结构的信息。
---
英文标题:
《Hedging without sweat: a genetic programming approach》
---
作者:
Terje Lensberg and Klaus Reiner Schenk-Hopp\'e
---
最新提交年份:
2013
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
英文摘要:
Hedging in the presence of transaction costs leads to complex optimization problems. These problems typically lack closed-form solutions, and their implementation relies on numerical methods that provide hedging strategies for specific parameter values. In this paper we use a genetic programming algorithm to derive explicit formulas for near-optimal hedging strategies under nonlinear transaction costs. The strategies are valid over a large range of parameter values and require no information about the structure of the optimal hedging strategy.
---
PDF链接:
https://arxiv.org/pdf/1305.6762