摘要翻译:
设T是特征为0的代数闭域k上的环面,考虑射影T-模P(V)。根据V的权重配置,我们确定了P(V)的射影二重子簇X何时是自对偶的。
---
英文标题:
《Self-dual projective toric varieties》
---
作者:
Mathias Bourel, Alicia Dickenstein and Alvaro Rittatore
---
最新提交年份:
2011
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
Let T be a torus over an algebraically closed field k of characteristic 0, and consider a projective T-module P(V). We determine when a projective toric subvariety X of P(V) is self-dual, in terms of the configuration of weights of V.
---
PDF链接:
https://arxiv.org/pdf/0805.3259