摘要翻译:
我们考虑了哪些零维格式变形为不同点集合的问题;等价地,我们问哪个Artinian K-代数变形为域的乘积。我们引入了一个syzygetic不变量,它揭示了正则性为2的零维格式的这个问题。该不变量在一般情况下对光滑性施加了障碍,完全解决了某些低次零维格式的光滑性问题。本文的工具还得到了关于点的Hilbert格式的其他结果,包括在每个嵌入维数D\geq4上最小次的非光滑零维格式的一个刻划。
---
英文标题:
《A syzygetic approach to the smoothability of zero-dimensional schemes》
---
作者:
Daniel Erman and Mauricio Velasco
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
We consider the question of which zero-dimensional schemes deform to a collection of distinct points; equivalently, we ask which Artinian k-algebras deform to a product of fields. We introduce a syzygetic invariant which sheds light on this question for zero-dimensional schemes of regularity two. This invariant imposes obstructions for smoothability in general, and it completely answers the question of smoothability for certain zero-dimensional schemes of low degree. The tools of this paper also lead to other results about Hilbert schemes of points, including a characterization of nonsmoothable zero-dimensional schemes of minimal degree in every embedding dimension d\geq 4.
---
PDF链接:
https://arxiv.org/pdf/0812.3342